Observation and Follow-Up: Core Seminar

“Students are not there to absorb what’s being poured into them but are part of the process of generating new knowledge.”
~ Professor Grover C. Gilmore, Psychology

Seminar Description

One of the best ways to enhance your teaching is to watch a master teacher or to be observed and receive feedback. For this seminar, you are asked to either observe an effective professor or arrange to have a Mentor TA observe you in your TA setting.

Choosing the observation: The professor you observe does not have to be in your own department. However, you cannot be currently enrolled in a class or lab with this professor. Depending on your TA responsibilities, you may wish to observe this professor in a classroom or laboratory setting. You are asked to observe at least one hour of instruction and complete the observation sheet available on the TA Training website.

Please note: The professor you observe must sign the observation sheet, which you will turn in along with the observation report at the Observation Follow-up Seminar. If you do not bring your signed and completed observation sheet with you to the Observation Follow-up Seminar, you will not receive credit for this seminar.

We ask that you send a note of appreciation to the professor that you observe.

Objectives:

- To observe a faculty member teaching an undergraduate course or lab in order to discover effective teaching strategies.
- To process the observation with faculty and Mentor TAs in order to enhance your repertoire of teaching strategies within your TA role(s).
Observation Seminar: Table of Contents

Faculty and TAs Recognized for Outstanding Teaching .. 2
 The John S. Diekhoff Award for Excellence in Graduate Teaching 2
 The Carl F. Wittke Award for Excellence in Undergraduate Teaching 3

Examples of Observation Seminar Reports .. 7
 Observation Report by Naomi Igarashi Takagi .. 7
 Observation Report by Craig Rudick ... 8
Faculty and TAs Recognized for Outstanding Teaching

Faculty and graduate teaching assistants who have been recognized for excellence in teaching are the best resources for new faculty and TAs. Through informal discussion, TA training seminars, UCITE seminars, and phone or email contact, you can get advice or reassurance from experienced instructors.

The John S. Diekhoff Award for Excellence in Graduate Teaching

This award is presented each May at the University Convocation. It was established in 1978 in memory of John S. Diekhoff (1905-1976), an eminent Milton scholar and teacher. It is awarded on a rotating basis to two faculty members from the following disciplines: Humanities, Arts, and Social Sciences; Engineering, Mathematics, and Natural Sciences; Biomedical Sciences and Professional Programs—Nursing, Social Work, etc. Past Diekhoff Awardees include:

2012
Teaching:
Mario Garcia-Sanz, Electrical, Computer, and Systems Engineering
Erkki J. Somersalo, Mathematics

Mentoring:
Eileen P. Anderson-Fye, Anthropology
Glenn D. Starkman, Physics and Astronomy

2011
Teaching:
T. Kenny Fountain, English

Mentoring:
Jeffrey R. Capadona, Biomedical Engineering
LaShanda Korley, Macromolecular Science and Engineering

2010
Teaching:
Daniel Goldmark, Music
Mendel Singer, Epidemiology and Biostatistics

Mentoring:
Susan Hinze, Sociology
Barbara Lewis, Communication Sciences and Pediatrics

2009
Teaching:
Hillel Chiel, Biology, Neurosciences, and Biomedical Engineering
Harsh Mathur, Physics

Mentoring (new in 2009):
David Schiraldi, Macromolecular Science
Christian A. Zorman, Electrical Engineering and Computer Science

2008
Heath Demaree, Ph.D., Psychology
Athena Vrettos, Ph.D., English

2007
Richard Boyatzis, Ph.D., Organizational Behavior
Richard Hanson, Ph.D., Biochemistry
2006 John Lewandowski, Ph.D., Material Science
 Charles Rozek, Ph.D., Biology
2005 Kimberly Emmons, Ph.D., English
 Gary Glabraith, Ph.D., Theater & Dance
 Janet W. McGrath, Ph.D., Anthropology
2004 Dmitri Kourennyi, Ph.D., Biomedical Engineering
 Aloen L. Towsend, Ph.D., Mandel School of Applied Social Sciences
2003 Neils F. Otani, Ph.D., Biomedical Engineering
 Robert W. Brown, Ph.D., Physics
2002 Eva Kahana, Ph.D., Sociology
 Catherine L. Albers, M.S.A., Theatre Arts
2001 Hope Barboukis, Ph.D., Nutrition
 Vanessa Druskat, Ph.D., Organizational Behavior
2000 Roberto Ballarini, Ph.D., Civil Engineering
 Michael Zagorski, Ph.D., Chemistry
1999 Fred Zimring, Ph.D., Psychology
 Jonathan Sadowsky, Ph.D., History
1998 Bo Carlsson, Ph.D., Weatherhead School of Management
 Christopher Whalen, M.D., School of Medicine

The Carl F. Wittke Award for Excellence in Undergraduate Teaching

This award is presented each May at the University Convocation. It was established in 1971 in memory of Dr. Carl F. Wittke (1892-1971), a distinguished faculty member and administrator who gained national recognition for his work on the history of American immigration. It is awarded on a rotating basis to faculty members of the Colleges of Case Western Reserve University: Humanities, Arts, and Social and Behavioral Sciences; Mathematics and Natural Sciences; Engineering. The Wittke award winners include:

2012 Heath Demaree, Psychological Sciences
 Ramez Islamboul, Modern Language
2011 Brian Metrovich, Civil Engineering
 Bernard Jim, SAGES
2010 Frank Merat, Electrical Engineering and Computer Science
 Rekha Srinivasan, Organic Chemistry
2009 Corbin Covault, Physics
 Nancy DiIulio, Biology
2008 Donald Feke, Chemical Engineering
 Richard Osborne, Management
2007 Deepak Sarma, Religion
 David Pearson, Accounting
The Graduate Dean’s Instructional Excellence Awards

The awards were established in 1988 to recognize graduate teaching assistants nominated by Department Chairs for outstanding achievement in carrying out their instructional responsibilities. There are two award categories: outstanding performance in a primary instructional role (direct assistance in or responsibility for classroom teaching) and in an instructional support role (grading, assisting in a laboratory, leading a recitation section, etc.). These awards include a certificate and honorarium and are presented at the Graduate School diploma ceremony during the University Convocation each spring. The awardees for the past four years include the following:

2012 Mary K. Assad, English
 Chi-Hung Chuang, Chemistry
 Catherine Dunning, English-SAGES
 Timothy Henderson, Computing and Information Sciences
 An Jiang, Art History
 Tammy Kuntz, Music Education
 Mike LaBarbera, Electrical Engineering
 Feng Li Laughlin, Chemistry
 Marcus Mitchell, English
 Monica Orlando, English-SAGES

2011 Vanessa Bond, Music
 Tennyson Doane, Chemistry
 Souha Fares, Statistics
Kendrick Shaw, Biology
Joshua Terchek, Sociology
Alden Voelker, Chemistry

2010 Robert Welling Addington, English
 Daniel Paul Anderson, SAGES
 Hannah Elizabeth Rankin, English
 Plusia E. Vassilaras, Chemistry
 Rachael Nichole Volokhov, SAGES
 Brian Scott Werry, Chemistry

2009 Alexandru Belu, Statistics
 Katherine Crispin, Geological Sciences
 Michael Flatt, Sociology
 Cassandra Freudenrich, SAGES
 Matthew Daniel Gawryla, Macromolecular Science
 Bradley Hruska, Music
 Jafeen Samiya IImudeen, SAGES
 David Jacobs, Physics
 Junheng Ma, Statistics
 Henry Milliman, Macromolecular Science
 Danielle Nielsen, English
 John Nowakowski, Mechanical & Aerospace Engineering
 Robin Shura, Sociology
 Barbara Swanson, Music
 Amanda Yoho, Physics

2008 Julia Christman, Mathematics
 Kathryn Daltorio, Mechanical Engineering
 Apurba Kumar Das, Fluid and Thermal Engineering
 Tasia Hane-Devore, English
 Yijing Fan, Statistics
 Brandy Schillace, English

2007 Dawn Aliberti, Sociology
 Tanetta Anderson, Sociology
 Eric Anderson, Mechanical and Aerospace Engineering
 Yu-Hua (Dean) Fang, Biomedical Engineering
 Matthew Gawryla, Macromolecular Science and Engineering
 Richard Kolb, Early Music
 Reijiro Matsuo, Physics
 Jamie McDaniel, English
 Ken McGraw, English SAGES
Seetharam Narasimhan, EECS
Liz Olson, Anthropology-SAGES
Rocco Parro, EECS
Gabriel Rieger, English
Penny Roufs-Neisen, Chemistry
Kenneth Rys, Biomedical Engineering
Xingxian Shou, Physics
Michael Weil, Art and Art History

2006 Anthony Baldridge, Physics
 Barbara Burgess Van Aken, English
 Eric Dimmitrov, Physics
 Iris Dunkle, English
 Kerim Genc, Biomedical Engineering
 Kimberly Hyde, Art History
 Kelsen Laberge, Mechanical Engineering
 Peng Lui, Statistics
 Debra Nagy, Music
 Chalet Seidel, English
 Brian Serve, Chemistry

2005 Peng Cong, Electrical Engineering & Computer Science
 Meredith Frey, Psychology
 Kristen Fouts, Biomedical Engineering
 Anna Levenstein, Music
 Sarah McCalister, Dance
 Marc Petre, Biomedical Engineering
 Ehren Pflugfelder
 Murat Tasan
Examples of Observation Seminar Reports

Observation Report by Naomi Igarashi Takagi

Describe the academic setting that you observed. Include the professional’s role in this setting. What were the goals for this class or laboratory? Were the goals accomplished?

I observed an ENGL 1## class during the second week of this semester. There were twelve or thirteen students attending this class. This is an introductory composition course, and the student population is a mixture of American students and international students. The instructor’s objectives for that day were to go over the course syllabus, to discuss some invention strategies (e.g. clustering, listing, etc.), and to do group work. All of her goals were accomplished successfully.

Describe the instructional strategies that enhanced the class or laboratory that you observed. Consider the degree of involvement and interaction that the students had with each other and the professional.

The instructor's teaching style was impressive because she constantly made jokes and made the students laugh. Actually, when she first came in, the students were very quiet, but her being lively and funny made them more cheerful and talkative.

She also put her students into groups so that there were one or two good writers in each group. She was able to do this because she had their diagnostics as her reference. Also, she made them write a letter to her at the very beginning of the semester, so she could estimate their language levels as well as their personality. The students will work with their group mates throughout the semester, so today's group work enabled them to become acquainted with one another. The students had to share things such as their favorite things to do in their spare time or incidents that changed their lives. At the end of the class, each group had to list twenty things they had in common and hand it in, which I thought was a skillful way of enhancing their solidarity.

Discuss what you have learned from this observation that you would like to include in your own repertoire of instructional strategies.

One of my ENGL 1## classes is also a mixture of native students and international students, and sometimes it is difficult to make them feel comfortable toward each other, especially because this is a language course. They can be self-conscious and nervous. For this reason, the instructor’s ways of “breaking the ice” were very insightful. She was very bubbly and cheerful, so even when she faced an awkward situation (e.g. a student made a yawn unwittingly), she could make a joke out of it while sending her message across to the student. I also thought her way of asking them to find twenty common things was great because even though her students' backgrounds were quite diverse, she made them focus on what they had in common instead of their differences from each other.

Open-ended response - please use this question to add information not covered in the other three questions.
Classroom atmosphere is very important for this type of interactive classes. Sometimes, it happens naturally, but sometimes we need to make efforts to make that happen. I thought her strategies were quite useful and insightful.

Observation Report by Craig Rudick

Describe the academic setting that you observed. Include the professional’s role in this setting. What were the goals for this class or laboratory? Were the goals accomplished?

I observed Professor X deliver a lecture to his introductory astronomy class of approximately 40 students. These students are non-science majors who are taking the course to fulfill a science requirement. The lecture was delivered as a Power Point slide presentation to the class. In that particular lecture, we were discussing the surface features and geology of Mars. We did so in little detail, with no mathematics, adding quantitative descriptions mostly to compare the structure of the planet to the structure of the planets studied previously. The major goal of the course, and the lecture specifically, is to try to increase the student's interest in science, but also to teach them the basic methods through which science works. This is different from many other science classes which seek to teach students to actually be scientists. A great emphasis was put on explaining the various missions and types of studies that have been undertaken to study this planet in a general sense, but did not deal with instrumentation, measurement techniques, or other technical details.

Describe the instructional strategies that enhanced the class or laboratory that you observed. Consider the degree of involvement and interaction that the students had with each other and the professional.

During the main lecture, Professor X often employed the use of rhetorical questions in order to stimulate the thinking of the students. The Power Point slide presentation contained many colorful and spectacular photographs, designed to grab the attention of the students, with the goal of being more memorable to students than text alone. Also, the lecture contained several short movies about Mars, attempting to further peak interest in the subject, as well as to allow a small break from the normal course of the lecture. However, the students' role was almost entirely as passive listeners, with almost no student-student interaction and only a few questions and comments directed at Professor X about the lecture. At the end of the chapter on Mars, Professor X actually worked through some problems on the overhead projector, similar to the problems the students will have on their homework assignments. During this exercise he seemed to put more emphasis not on solving the specific problem, but on general problem solving techniques. These techniques included a stress on using the correct, consistent units in a problem, and always trying to check your answer against what you already know to make sure the answer is plausible.

Discuss what you have learned from this observation that you would like to include in your own repertoire of instructional strategies.
I think the most interesting thing that I learned from observing Professor X teach was how he went about solving the problems. His emphasis on basic problems solving skills, rather than specific problems, is certainly useful to teach to introductory science students. For several of the problems he demonstrated a complete, mathematically correct method for finding the answer, as well as a more quick and dirty way. It is important for students to learn that there are many ways to solve a problem and it is important for us as teachers to try to teach this skill to our students. I also noticed how Professor X used his rhetorical questions to try to keep the students involved in what was essentially a monologue lecture. In a class of over 40 students, it is often impossible to incorporate a great deal of student interaction into the curriculum. Thus it is important for us to do what we can to keep the students interested and motivated. Professor X did this not only with his rhetorical questions, but with his many picture and movie supplements.